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Abstract 

A method is presented whereby the amp!itude coefficients 
of molecular normal modes of vibration are treated as in- 
dependent variables in the treatment of thermal effects 
in X-ray diffraction, and applied to the bovine pancre- 
atic trypsin inhibitor, form II (P21212~, a=74.1, b=23.4, 
c=28.9 A,). It is shown that the description of molecu- 
lar motion furnished by 892 isotropic temperature fac- 
tors may be largely reproduced using only 19 molecu- 
lar thermal parameters from which anisotropic temper- 
ature factors may be synthesised for every atom. The 
method shows that motions and/or disorders external to 
each molecule are the largest single source of apparent 
motion, and that the internal motions are comparable to 
those predicted by Levitt, Sander & Stern [J. Mol. Biol. 
(1985). 181,423-427] at 300 K. 

1. Introduction 

It has become increasingly evident in recent years that 
the conventional treatment of thermal motion in macro- 
molecules using isotropic Debye-Waller factors provides 
only a poor description of the thermal motions believed to 
be present in such molecules, and the use of anisotropic 
Debye-'Waller factors for proteins is usually precluded 
by the adverse ratio of parameters to observations that 
results when this is attempted. Some proteins, includ- 
ing the bovine pancreatic trypsin inhibitor (BPTI) (Wlo- 
dawer, Walter, Huber & Sj61in, 1984), have, however, 
been refined with anisotropic thermal parameters, using 
the method of Konnert & Hendrickson (1980) and Hen- 
drickson & Konnert (1981 ) which imposes restraints that 
ensure that the thermal parameters of neighbouring atoms 
be similar, thus overcoming, to some extent, the shortage 
of data. Howlin, Moss & Harris (1989) have also per- 
formed a refinement of anisotropic thermal parameters 
for selected rigid-body groupings of bovine ribonuclease- 
A using the TLS method of Schomaker & Trueblood 
(1968). Both these methods give results which are more 
detailed than the present work since their models pos- 
sess more parameters. The objective here, however, has 
been to test whether the salient features of observed B fac- 
tors are accountable in terms of a combination of internal 
modes of vibration and rigid-body motions of the entire 

molecule and to attempt an apportionment of the apparent 
motions to each of these sources. 

Attempts to describe macromolecular thermal motion 
in a more satisfactory manner have arisen in the field of 
molecular mechanics in which there are two main ap- 
proaches. One of these consists of integrating the equa- 
tions of motion of each and every atom in the molecule 
using empirical interatomic force fields. The immediate 
result of such a calculation is a very large number of co- 
ordinate sets and velocity sets separated one from the next 
by some small interval of time. From the statistics of such 
sets it is possible to extract mean atomic positions and mo- 
ments of the probability density function (p.d.f.) of atomic 
centres about such means. Correlations between motions 
of neighbouring atoms may also be studied. The strength 
of this method is that it makes no assumptions concerning 
the nature of the atomic motions and it is capable of mod- 
elling situations in which atoms move in anharmonic po- 
tential wells and have p.d.f.s which are far from Gaussian. 
The limitations on its applicability arise from the scale of 
the calculations involved and from the fact that it is dif- 
ficult to close any feedback loop to improve the potential 
functions that govern the simulation in the event that ob- 
served and calculated diffraction amplitudes fail to agree. 

The other main approach consists of the estimation of 
the normal modes of vibration of the molecule from the 
matrix of second derivatives of potential energy at the 
potential-energy minimum. This approach is complemen- 
tary to the first. By working with internal coordinates, es- 
pecially dihedral angles, the dominant motions, i.e. those 
with low frequency and high amplitude, may be char- 
acterized using many fewer modes than the 3 n - 6  for n 
atoms which are required to describe the elastic charac- 
ter of the molecule fully (Levitt, Sander & Stem, 1985). 
The main limitations of the approach are that it is limited 
to the harmonic approximation, and that it cannot prop- 
erly deal with bound water molecules. Nevertheless it is 
assumed in this work that the motions actually present in 
the molecule, and which are simulated by the molecular- 
dynamics approach, contain strong components of mo- 
tions attributable to the low-frequency high-amplitude 
modes, and the method described below estimates ampli- 
tude coefficients for a given set of modes directly from the 
X-ray observations. When these coefficients have been 
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determined, anisotropic Debye-Waller factors for every 
atom may be synthesized from them, giving a descrip- 
tion of the thermal motion based" on a small number of 
independent variables, which may then be compared with 
more traditional treatments. 

2. Theory  

We begin by reviewing the theory so that the assumptions 
implicit in the treatment are exhibited. The instantaneous 
scattering amplitude for the crystal is 

F(s) = Z fi exp[27ri(qi + ri).s] (1) 
i 

where I is the 3 x 3 identity gives 

(qi _ qj)T = qT A (8) 

and 

(cos 27 r (q i -  q j )Ts)  

1/2 f exp(-- 7rqTM - i q) cos 27rqT AS I MI- dvq 

= exp(--TrsTATMAs). (9) 

for scattering vector s, Elsl = (2 sin 0)/A] where ri is the 
fixed mean position of atom i and qi is its instantaneous 
displacement. The intensity is then given by 

I(s) = (F ( s )F*  (s)) 

= Z Z fifj exp[ZTri(ri - rj).s] (2) 
i j 

x (cos 27r(qi - qj).s + i sin 27r(qi - qj) .s)  

in which () denotes time averaging. 
The distribution of (qi  -- q j )  is assumed to be symmetri- 

cal so that the time average of the sine vanishes. Treating 
all vectors as column vectors and using a superscript T to 
denote transposition, we may define the six-dimensional 
vector 

qT = (qT, qT) (3) 

for one ij pair; then 

(cos 27r(qi - q j )Ts)  

=,Ml-'/2 f f exp(--TrqTM-'q) 
x cos 27r(qi - qj)Ts dvidvj 

(4) 

in which the 6 x 6 matrix M describes the probability den- 
sity in q space that atoms i and j are simultaneously dis- 
placed by qi and q j  respectively, and IM] is its determi- 
nant. M is related to the fluctuations in q by 

[M] -I/2 exp(--~-qTM-tq)  

= (2 )-31(qqZ) i-,/2 exp(_ ½qZ(qqr)-,q) 

since (qqT) contains variances and covariances of the el- 
ements of q, so that 

M = 27r(qqT). 

Definition of A as the 6 x 3 matrix 

(_'i) 

The model we adopt to describe the atomic motions 
within the crystal consists of two parts. The first part re- 
gards each molecule as having internal motions described 
by the normal modes calculated by Levitt, Sander & Stern 
(1985). Each such mode has a time dependence which 
is uniform within one molecule, but we suppose that the 
phases of equivalent modes in separate molecules are 
unrelated although their amplitudes and frequencies are 
treated as being the same. The second part consists of 
rigid-body displacements and rotations of each molecule 
in a manner which can be described in terms of long- 
period lattice modes which span the entire crystal. 

If there are n internal modes active then we may write 

ti tj ) (10) q i = ( N ~  L ~ ) ( T ~ )  q j = ( N j  L J ) ( T  j 

in which Ni and Nj have three rows each and n columns 
which contain the vector displacements for atoms i and j 
for unit amplitude of each mode. These matrices are con- 
sidered to be a molecular property and not to vary from 
molecule to molecule. The t matrices are column vectors 
given by 

t T = (A, cos(w~t + ~ ) ,  A2 cos(w2t + ~ 2 ) , . . . ,  

A,~ cos(~nt + ~p~)) (11) 

which define the amplitude and time dependence of each 
modal displacement and include a phase angle ~ for each 

(5) mode. Each molecule is considered to have its own set 
of phases ~, and solely for this reason ti is distinguished 
from t 3, the distinction vanishing if atoms i and j are in 
the same molecule. 

The matrices Li and Lj are similar to N but describe the 
overall displacements of the molecules containing atoms 

(6) i and j and have similar time-dependent vectors Ti and 
Tj.  For an ideally resonant system Ti = Tj  even if atoms 
i and j are widely separated (many unit cells apart) and 
the modes described by Li and L 3 span the entire crystal. 

(7) However no such lattice modes are available. 
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Using (3) and (10) we evaluate (qqT} as 

/ 

(qqT} = [ (Ni 

( Nj 

Li)  ( (titT} 
(Tit~> 

Lj ) ( 
(tjt~) 
(T/t~) \ 

(tiT~} 
(TiT~})  ( L i )  

(tjTT} 
( T j T : > )  ( N~ 

(Ni Li)( (tit~} (tiT~} (N.~ / 
(Tit~} ( T i T ~ } ) )  \Ls 

(Nj Lj ) ( ( t j t ~ )  (tiTS) ( N ~  
(Tier) (TjTf}) ) \Lj  

(12) 

in which 

<tit~g) = (t/t~) 
= P = diag(A~/2, A~/2,... A~/2) 

(TiT~} = (T jTf )  = Q 

diag(A~+l/2, 2 = An+2~2,... A~+m/2) 
(TiTf} = R 

( T j t ~ / -  (T i t~ /=  (T i t~ /=  O 

(tit~} = PC 

C = diag(cos Aqol, cos Aqo2, . .. cos A~n) 

(13) 

so that (9) becomes, from (6), 

(cos 27r(qi-  qj)Ts) 

= exp[--27r2S T(NiPN T + LiQL T - NiPCN T 

- LiRL~ - NjPCN~ - L jRTL~ 

+ N jPNf  + LjQLf)s ]  

(14) 

which may then be inserted in (2) to give the intensity. 
In principle, the expression for the intensity is a dou- 

ble summation and must be treated as such unless terms 
in (14) involving both i and j can be ignored. There are 
four such terms, two involving C and two involving R. 
If atoms i and j are in the same molecule C is the iden- 
tity and the four terms involving P are (Ni - Nj)P(N~ - 
Nf).  However, the double summation must be taken over 
the whole crystal (or the region of it in which the X- 
irradiation has phase coherence) so that the vast major- 
ity of ij pairs involve atoms in different molecules for 
which the expectation value of C is zero. If there are N 
molecules within the region of X-ray phase coherence, 
and if there is no phase coherence between correspond- 
ing molecular modes in different molecules then the sum- 
mation in (2) may be written as A + B where A is the 
summation over all atom pairs in which both members of 
the pair are in the same molecule, and B is the summation 
in which atoms i and j are in different molecules. A is 
N times the double summation over a single representa- 
tive molecule with C = I, and B is N(N - 1) times the 
double summation over a single representative molecule 
with C = O. Terms of the first type are therefore present 
in proportion ( N -  1 )-  t and may be ignored. Some degree 

of local phase coherence among neighbouring molecules 
cannot alter this conclusion unless their number becomes 
comparable with N. 

Similarly the matrix R is equal to Q if the crystal is 
treated as one elastic resonator and L contains a suffi- 
ciently large number of modes, but here the motions of 
unit cells remote from each other are treated as uncorre- 
lated, L being used to describe the positional and orien- 
tational uncertainty of widely separated unit cells arising 
from any cause, including static disorder, and under this 
interpretation the expectation of R is also zero. 

The eight terms in (14) are thus reduced to four and (2) 
becomes 

I(s) = E E fifj exp[27ri(ri - r/)Ts] 
i j 

× exp[ -27r2sT( i iP i~  + LiQL~ 

+ N jPNf  + LjQLf)s ]  (15) 

= ~ fj exp 27fir i.s 
3 

× exp[-27r2s T(N/PNf  + L/QLf)s ]  2. 

This reduction to the square of a single sum is possible 
only if C and R are treated as zero. With this reduction, 
the distinction between N and L and between P and Q 
need no longer be retained, N i from now on being given 
(n+m) columns for the n internal modes and the m lattice 
or external modes. The symbol P will henceforth stand 
for diag(P, Q), and elements on its diagonal will be given 
the symbol p (in place of A2/2) and subscripted p or q. 

Thus atoms contribute to each structure factor with 
temperature factor exp(-27r2sTNjPNfs) and F(s) 
transforms to an image of stationary atoms each convo- 
luted with the transform of this. Thus if the stationary- 
atom scattering factors are represented by expressions of 
the form 

K 

fJ = E Zjkexp(--~ra}klsl 2) (16) 
k=l 

for which a suitable value of K might be 2 or 3, then the 
electron density is given by 

p(r) : ~ ~ ZjklMjkl-'/2 
j k 

x exp[-~r(r T - r f )Mf~( r  - rj)] 
(17) 
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in which 

Mjk = a2kI + 27rN/PN T (18) 

where Mjk is now one of K 3 x 3 matrices associated with 
atom j ,  being a partition of M, augmented on the diag- 
onal; rj  is the position of atom j and Zjk and ajk are 
respectively the electron count and radius of the kth com- 
ponent of atom j so that the matrices Mjk incorporate a 
stationary-atom form factor. 

To optimize the matrix P we require -Pc and the deriva- 
tives OFc/Op for all reflections and all modes. These are 
obtained by constructing maps of p(r) and of the func- 
tion Op(r)/Op, one for each mode, and transforming these 
to reciprocal space. A full-matrix least-squares solution 
for P is then obtained in which the normal matrix is con- 
structed numerically from these derivatives. An alterna- 
tive analytical expression for the normal matrix elements, 
obtained by replacing summation over all reflections by 
analytic integrals over reciprocal space, has also been ob- 
tained but has not been used because double summation 
over close atom pairs is still required. Similarly, direct 
expressions for OFc/Op are readily obtained but appear 
computationally less efficient than the route indicated. 

From (17) 

1 0p(r) = ~ ~ Zjk [-~lMak1-3/20lMjkl 
Opp j k Opp 

- r~')Mj-~ (r - r j)]]  + IMJk[-l/2 0[--Tr(rT Opv 
. I  

× exp[-Tr(r T - rT )Mfk t ( r -  rj)]. 

B u t  

(19) 

OM-~O /OPv = -M-~njv27rn~pM-~ (20) 

in which nip is the pth column of N j, and 

IMjkl-' OIMjkl/Opp = 27rnTpM-j~njp (21) 

so that 

3 .  I m p l e m e n t a t i o n  

The parameters which are optimized are the diagonal ele- 
ments of P, (13), and an overall scale factor, and the least- 
squares operation is structured in a manner which permits 
phases qo [unrelated to those of (11)] associated with Fobs 
to be used if these are known and which recognizes that, 
on the complex plane, Fobs may be well defined in the ra- 
dial direction, and less well defined in the tangential direc- 
tion. This structuring provides for a number of techniques 
with the same code. 

For each reflection we treat F as a two-dimensional real 
vector, rather than as a complex number, and write 

Fo(s) -- ( IF°l c°s ~ ) 
IFol s in~ 

(lEvi cos~ ) 
Fc(s) = IFcl sinc~ 

OV~(s) _ (]Gvl cos/3p ) (23) 
Opp - [Gp[ sin/3 v " 

Then, for scale factor S, the residual vector (one reflec- 
tion) after adding parametric increments 6S and 6p is 

6 = d - D (  6S 6p ) (24) 

in which 

d = (Fo - SFc) 

(IFclcosc~ SlG, lcos/3, ... SlG,~+,~lcos/~,~+n) 
D =  [ F c l s i n ~  S l G l l s i n / 3 1  . . .  S l G m + n l s i n / 3 m +  n . 

(25) 
The residual to be minimized is 

E - 2 ~ T w ~  (26) 
s 

in which the weight matrix 

Op(r)/Opp 

~. jpl¥1jk njp 
j k 

T -1 T + 7r(r T - rj )Mjk njp27rnjp 

x MT~(r -- rj)] lMikl -'/2 

x exp[-rr(r  T - r~)M~-~ (r - rj)] 

= Tr ~-~ y ~  Zjk {27r[(rT -- r~)M-~njp] 2 
j k 

- n~pMj-klnjp}lMjk1-1/2 

X exp[--Tr(r T -- r~)Mj-~(r - rj)]. 

(22) 

w=(COSqO -sin~o a~ -2 0 ) (  cos~o sinqo 
\sin~o cosqo)(  0 at 2 - - sin ~p cos ~p) 

[ o~ -z cosZ~ + a [  z sin z ~p (a~ -z - a t  z) sin ~ cos ~,) 
- ~, (a~ -2 - o~ 2) sin ~, cos qo o-~ -2 sin 2 ~p + o-~ -2 cos 2 ~p ) 

(27) 

2 and is used to express the fact that Fo has variances 0.,, 
0 .2 in the radial and tangential directions respectively 
(Diamond 1976). E is then minimized by 

( 6 S  - i  
lip ) = ( Z  DTWD) ( Z  DTWd) (28) 

s s 
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Atom 
Zj 
Z j2 
Z j3 
ajt (h) 

Table 1. Coefficients ajk of equation (16) 

H C N 0 P S 
0-60738 3.47518 3.94769 4.08719 8-86185 6.86537 
0-38981 2.50334 3.03812 3.90173 3-50029 9.12697 

2.63067 
1.54017 i.45475 1-25908 1.16993 0.30335 1.43218 

aj2(fk) 0.74435 0.35283 0.38481 0.41408 1.91711 0.28788 
aj3 (/~) 1.17225 
R.m.s. 0.00249 0-02004 0-01266 0.00886 0.00588 0.00664 
error 

so that a typical element of the normal matrix is 

s 2 ~ IGpllGql [0"7 2 COS(/~p --  ~ )  COS(flq - -  ~ )  
$ 

+ 0-t  2 sin(/3p - qo) sin(/3q - qo)] 

(29) 

necessary to invoke this mechanism, i.e. we have set 
Z = I .  

The software includes a five-bit control number set by 
the user which operates as follows: 

bit set clear 

1 0-,. read from data file 0-r set to the same value 
for all reflections 

2 at read from data file at set to the same value 
for all reflections 

4 0-t multiplied by I Fol 0-t unchanged 
from data file 

8 ot multiplied by 0-t unchanged 
(x/1 - m2/m) with m 
taken from data file 
(m = figure of merit) 

read from data file ~ = o~ 16 

and of the gradient vector is 

s i c ,  l{ ;2 cos( . - 9)[Irol- stFcl  cos(  - 9)] 

- ot2SIFcl sin(j3, - 9) sin(c~ - 9)}. 
(3O) 

Equation (28) is evaluated as 

6S i 6p ) = U-  A Z A - '  ATu  T-l  ( Z  DTWd) 
s 

(31) 

so that, for example, if this control number is zero and 
0-t 1 = 0 then the phase of Fo is treated as being equal to 
the phase of _Pc and tangential errors are given no weight. 
This is conventional I FI refinement in which the constant 
0-r corresponds to 0-(I)/2x/7, which approximately mod- 
els errors arising from counting statistics. Setting the con- 
trol number to 1 refines against IF[ but with individual 
weights for the reflections. Method 29 sets ~ and or,- from 
the data file and at proportional to ]Fol times the tangent 
of the uncertainty in ~,. 

in which U is diagonal and such that 

u T - '  ( E  DTWD)U -1 (32) 
$ 

has 1 at every diagonal position, i.e. is the correlation 
matrix, and A is orthogonal and such that 

A =  A T u T - t ( ~ D T W D ) U - ' A  (33) 

s 

is diagonal and contains the eigenvalues of the correlation 
matrix. Z is a diagonal filter matrix, normally containing 
1 s but containing elements in the range 0 to 1 in positions 
corresponding to very small eigenvalues. 

The purpose of U is to form a normal matrix which is 
independent of the scales on which the modal displace- 
ments in N and L are presented and which reflects the ob- 
servational correlation among the modes. Off-diagonal 
elements in U T- .  (~--~s DTWD) U- l  frequently reach 0.6 
and are all positive except in the first row and column 
where they are all negative, in accordance with the well 
known interaction of scale and temperature factors. 

Diagonalization by A has been included because these 
high correlations lead to a wide eigenvalue spectrum, 
even after scaling by U. So far, however, condition num- 
bers (,~max/,~min) have been about 50 and it has not been 

4. Method  

The radii ajk in (16) are the radii at which the density of 
the kth component of a stationary atom has fallen to e -~,  
about 1/20th, of its central value. These have been set to 
the values given in Table 1, which, together with the stated 
electron counts, reproduce the figures given for atomic 
scattering factors in Table 3.3.1A of International Tables 
for X-ray Crystallography ° (1968) with a r.m.s, error in 
the range 0 < Isl <_ 1 • 0 A-~ given in the bottom row. 

The internal modes used were like the ten lowest- 
frequency modes of Levitt, Sander & Stern (1985) and 
were kindly supplied by M. Levitt. The calculation of the 
modes used here, however, included all hydrogen atoms, 
whereas those of the 1985 paper included only a subset 
of the polar hydrogens. These authors give in their pa- 
per reason to believe that most of the molecular motion is 
attributable to the eight lowest-frequency modes. 

The external modes used were of two kinds, trans- 
lational and rotational. The translational modes con- 
sisted of uniform displacements of all atoms in one 
molecule along each of the six (110) directions (in a cu- 
bic Cartesian coordinate system, rather than the crystallo- 
graphic (110)). These six were chosen because they are 
a minimum set which together may synthesize an over- 
all anisotropic temperature factor of arbitrary orientation. 
The rotational modes provided for libration about each of 
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the three principal axes of inertia through the centroid of 
each molecule. No provision was made for screw mo- 
tions. 

The data set used to define the BPTI molecule on in- 
put was constructed by merging data from two sources. 
One of these is the data set 5PTI from the Protein Data 
Bank (Bernstein et al., 1977) deposited b~¢ Huber and 
Wlodawer following their combined X-ray and neutron 
refinement of form II of the bovine pancreatic trypsin in- 
hibitor (Wlodawer, Walter, Huber & SjOlin, 1984). These 
authors report that a restrained refinement of anisotropic 
thermal parameters was performed by the method of Hen- 
drickson & Konnert (1981) in which thermal parameters 
of nearest and next-nearest neighbours are restrained to 
be similar. Nevertheless 5PTI contains only isotropic B 
factors, presumably extracted from the anisotropic set by 
the method of Hamilton (1959). The existence of these re- 
straints meansthat the 892 B factors in group 1 are not en- 
tirely independent, but their averages, a residue at a time, 
must be little affected by this. 

The 5PTI data set contains coordinates, occupancies 
and isotropic temperature factors for 1105 atoms consist- 
ing of 

group 1 892 atoms, including H and D, for the 
protein 

group 2 17 atoms representing alternative 
conformations for the side chains of 
residues 7 and 52 

group 3 194 atoms representing 63 molecules of 
D20 and one phosphate ion 

group 4 2 atoms given zero weight. 

The second data set, supplied by M. Levitt, contains 
coordinates and modal displacement matrices for the ten 
lowest-frequency modes for all atoms in group 1 and no 
others. Both data sets use Cartesian coordinates in .~ 
rather than crystallographic fractional coordinates and all 
the internal working of the current program [except for the 
FFT (fast Fourier transform) operations] uses these too. 

For each atom in the Levitt data set, an atom, match- 
ing by position, was found in 5PTI and the corresponding 
entry in the merged data set then consisted of the coor- 
dinates from the Levitt source, occupancies from 5PTI, 
negated temperature factors from 5PTI, the ten modal dis- 
placement vectors from Levitt and the nine displacement 
vectors for the external modes as already described, The 
Levitt coordinates have been used because these are the 
ones used by him when calculating the modal displace- 
ments, so that the model used is self consistent. They 
differ from the 5PTI coordinates by 0.05315 ~, r.m.s, dis- 
tance over the atoms in group 1. This difference of coor- 
dinates, while it may slightly raise the R factor, has only 
a second-order effect on an optimization in which only 
scale and thermal parameters are refined since derivatives 
of Fc or of p(r) with respect to position are orthogonal to 
those with respect to scale or thermal parameters. The 
5PTI temperature factors were retained for later compari- 

son purposes but were negated to indicate that such atoms 
are to have their thermal parameters handled by the meth- 
ods of this paper. 

Atoms in groups 2 and 3 were then transferred from 
5PTI to the merged data set using coordinates, occupan- 
cies and temperature factors all from this source. They 
were also given vanishing modal displacement vectors. 
These atoms then contribute to Fc in the manner attributed 
to them by Wlodawer et al. but contribute nothing to 
OFc/Op. They do, however, participate in the determina- 
tion of the overall scale factor, S. Atoms in group 2 have 
partners in group 1 with which their occupancies sum 
to unity. Occupancies are treated here as non-adjustable 
multipliers on the Z values. 

Of the two atoms in group 4 one is listed as 'unknown, 
probably potassium' in 5PTI but is given an atom type 
identifier of zero. This atom has been omitted from the 
working owing to uncertainty concerning the appropri- 
ate stationary-atom scattering factor to use. The other 
is a software artefact at the origin (mine), and is zero 
weighted. 

The reciprocal-space data set used is R5PTISFX from 
the Protein Data Bank, also deposited by Wlodawer and 
Huber. This data set contains 17555 independent reflec- 
tions in the resolution range 6-1 A, but does not contain 
individual values of expected standard deviations for the 
structure factors. Consequently method 0 has been used 
with cr~ -~ set to zero (see above). 

Operationally, the software consists of several free- 
standing Fortran programs (available on request) linked 
together into a cycle at the command procedure level 
(VAX/VMS DCL) and run on a VAX 8600. This has 
permitted standard packages (e.g. for FFT) and standard 
file structures to be used consistent with the practices of 
the Collaborative Computing Project 4 (CCP4) of the UK 
Science and Engineering Research Council. Specifically, 
in scanning the molecule to construct maps of p(r) and 
Op(r)/Opp, function values for all 20 maps at a single grid 
point are stored in consecutive locations, for reasons of ef- 
ficiency at this stage. The resulting file has 20 interleaved 
maps which then need to be separated before transforma- 
tion. On transforming each map a 'labelled column for- 
mat' (LCF) file is constructed, a column each for IGI and 
/3 being added for each map, so that the matrix of deriva- 

tives for the least-squares stage then consists of a LCF file 
of some 48 columns. 

On output, the matrix NPN T, in ~2, is given for each 
atom together with the eigenvectors of each such matrix 
scaled by the square root of the corresponding eigenvalue. 

These vectors then represent, in ,~,, the r.m.s, displace- 
ments in the three principal directions for each atom. Fur- 
thermore, the square root of the arithmetic mean eigen- 
value then gives the radius of an equivalent spherical dis- 
tribution having the same r.m.s, displacement (Hamil- 
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ton, 1959), and this may then be compared with the 
isotropic r.m.s, displacement (in any one direction) given 
by (B/87r2) I/2 using the B values in 5PTI. Average and 
r.m.s, values of both these quantities were obtained on a 
residue-by-residue basis for comparative plots, and cor- 
relation coefficients between them were calculated on an 
atom-by-atom basis. 

For any group of positive quantities with mean ~ and 
variance 0 -2 the ratio of their geometric mean to their arith- 
metic mean is e x p ( - 0 - 2 / 2 ~  2) to a good approximation for 
small values of the third and higher moments  of their dis- 
tribution. Thus, if we obtain a second equivalent radius as 
the square root of the geometric mean eigenvalue, which 
corresponds to the radius of the sphere of equal volume, a 
plot of both these equivalent radii as a function of residue 
number gives an indication of the scatter of the eigenval- 
ues, and thus of the anisotropy. 

5. R e s u l t s  

Fig. 1 summarizes the results obtained for the protein 
atoms (group 1) and compares these with the isotropic 
temperature factors given by Wlodawer  et al. (1984), in 

5PTI. The broken curve is the quantity (B/87r2) j/2 from 
5PTI, averaged over the atoms of each residue and plotted 

as a function of residue number. The two highest continu- 
ous curves are the two forms of equivalent radii described 
above, similarly averaged over the atoms of each residue. 
It is evident from these that the 19 thermal parameters 
used in this work provide a description of the thermal mo- 
tion which closely matches the description given by 892 
isotropic parameters. This pair of curves also shows, as is 
to be expected, that the greatest anisotropy occurs where 
the apparent motion is greatest, especially at residue 39 
and the C terminus, at which points spheres of equal vol- 
ume compare with the isotropic B values more closely 
than do the spheres of equal r.m.s, displacement.  The 
correlation coefficients between the radii derived from the 
isotropic B values and the equivalent radii found here are 
0.720 for the spheres of equal r.m.s, displacement and 
0-783 for the spheres of equal volume, these figures be- 
ing derived from the individual atomic values, not from 
the residue averages. 

Having determined all 19 diagonal elements of P one 
may then enquire how much of the apparent motion arises 
from each source by replacing NPN T for each atom by 
such a matrix in which only selected elements of P are 
non-zero, these being given the values which arise when 
all 19 are determined together. When this technique is 
used to isolate the contribution from the six overall trans- 
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Fig. 1. Average apparent atomic radius plotted against residue number. The broken curve consists of the quantity (B/87r2) I/2 derived from 
Wlodawer and Huber's B values given in 5PTI, averaged over the atoms in each residue (group 1), and plotted against residue number. The top 
two solid curves are radii of isotropic equivalents to the anisotropic thermal parameters produced in this work. The upper one of the two is the 
radius of a spherical distribution of equal r.m.s, displacement and the lower one is the radius of a sphere of equal volume• These two curves 
diverge where the distribution NPN T is strongly anisotropic and coincide where it is spherical. These curves are likewise averaged over the 
atoms of each residue and should be comparable to the broken curve. The remaining solid lines are radii of spheres of equal r.m.s, displacement. 
Of these the straight line is the contribution attributed to the six translational modes in the full optimization (19 parameters plus scale factor) 
and thus represents an overall anisotropic B factor attributable to lattice motion or lattice disorder, and is a property of the crystal rather than an 
intrinsic property of the molecule. It is evidently the largest single contribution. The curve marked with asterisks is the contribution attributed 
to the three libration modes and thus represents the orientational motion or disorder which, likewise, is not an intrinsic property of the molecule, 
being controlled by the precision with which each molecule is oriented on its site. The remaining curve, marked with + signs, is the contribution 
attributed to the ten lowest frequency modes of Levitt, Sander & Stern, and is thus a molecular properly representing contributions arising from 
motions internal to each molecule. 
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lational modes (lattice modes) the horizontal line at about 
0-33 .~, results. Taken literally, this means that if one ex- 
trapolates the crystal lattice from the vicinity of one unit 
cell to some part of the crystal which is remote but still 
within the X-ray coherence volume, then unit cells in the 
remote region are expected to be randomly displaced rel- 
ative to the extrapolation by some 0.33 ,~, on each coordi- 
nate, though, as we show below, this figure represents an 
upper limit. This figure itself is made up of a combination 
of long-period motions and time- and space-dependent 
fluctuations in cell size arising from the presence of a pop- 
ulation of water molecules in thermal motion between the 
protein molecules. Variations in the details of intermolec- 
ular contacts also contribute to this figure. 

The two remaining curves in the diagram are both 
graphs of the radii of spheres of equal r.m.s, displace- 
ment, the one marked with + signs being the contribution 
from the ten modes of M. Levitt, and the remaining curve 
(marked with asterisks) the contribution from the three 
libration modes. The remarkable similarity of these two 
curves arises because rotational modes (by definition) and 
internal modes (because they have zero net momentum) 
tend to have their largest motions on the surface of the 
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Fig. 2. Root mean square displacements given by Levitt, Sander & 
Stem. Each graph is the r.m.s, displacement of c~-carbon atoms plot- 
ted as a function of residue number for the eight lowest-frequency 
modes in (a) to (h). These are calculated to correspond to a BPTI 
molecule in vacuo at 300 K. (i) shows the r.m.s, displacement result- 
ing from the combined displacement of the first eight modes, and (j) 
likewise from all 208 modes. All the modes are derived using only 
the torsion angles in single bonds as variables, bond lengths and an- 
gles being treated as constants. Figure reproduced with permission 
from Fig. 7 of Levitt, Sander & Stem (1985). 

molecule; thus the variation in the two curves tends to re- 
flect the distinction between internal and surface residues. 

It is evident from Fig. 1 that lattice effects which 
yield an overall anisotropic temperature factor provide the 
largest of the three contributions to the observed B factors. 
It is also apparent that the level of displacement calculated 
by Levitt (Figs. 2i and j) (which should be higher by a fac- 
tor v'~ than the corresponding curve in Fig. 1), becomes 
comparable with the component attributed to the internal 
modes in Fig. 1, but could not otherwise be reconciled 
with the complete B values. 

It is important that this separation of the apparent dis- 
placements into inter- and intramolecular effects be es- 
timated accurately since the intramolecular contribution 
can be expected to be similar in solution and to have some 
bearing on the reaction kinetics of BPTI. To some extent 
the apparent distribution as between these two types of 
contribution must be a function of the number and types 
of modes offered to the optimization. Fig. 3 shows the 
effect of varying this number. Independent optimizations 
were done for each of 6, 9, 14 and 19 modes, in each of 
which the scale factor was also optimized. These group- 
ings were respectively the six translations, these plus the 
three librations, these plus the five lowest-frequency in- 
ternal modes, and these plus the next five internal modes. 

Both types of mean equivalent radius, averaged over 
all the atoms of group 1, are plotted using circles and 
squares. The upper pair of curves uses all the modes in 
the optimization concerned and rises gradually to bracket 
the value 0.443 .A, which is the mean o f  (B/87r2) 1/2 de- 
rived from the values of B given by Wlodawer et al. for 
the group 1 atoms in the data set 5PTI. This is the value 
to be expected from the modal method if the number of 
modes employed were sufficient to reproduce all the de- 
tailed fluctuations of B factor which are present in 5PTI. 
The lower curve is the contribution of the six translational 
modes alone in each of these optimizations and is remark- 
ably stable when nine or more modes are involved, sug- 
gesting that the lattice contribution to the apparent motion 
is already quite well estimated. This fact must be inter- 
preted with some caution however, because internal mo- 
tion such as may be characterized by modes 11 to 208 of 
Levitt, Sander & Stem (1985), which are not modelled by 
the present optimization, if present in the molecule must 
be represented by whatever parameters are available to 
the optimization. Careful comparison of Figs. 2(i) and (,j) 
shows that the change in r.m.s, displacement of o~-carbon 
atoms occasioned by adding modes 9 to 208 to modes 1 to 
8 is calculated to be to add 0.17 ~, overall with little other 
change, and this figure may be used to estimate a lower 
limit for the lattice contribution in the present work. In 
Levitt's notation we may write 

O. 1 to [o.9to20812 _ [O.I to [O. 1 to8 , i  812+L , i  J L , i  208]2 . ~  ,~i +Acr] 2 (34) 
/ 

9 to 208 ~ /  1 to 8 Crc, i ~, 2cra i  mo" 4" (AO' )  2 
1 ¢  

= 0 . 3 9 A  

(35) 
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using the mean of  cr I to8 from Fig. 2(i), which is 0.36 ,~,, od 
in place of  o -1 to8 in (35). Supposing that internal motion 
of this order arises from modes 11 to 208 and that this is 
subsumed within what has been modelled here as lattice 
displacements, then 

11 t o 2 0 8 1 2  r lattice12 cr~i + [oc~i l = 3 X 0 .  332/~ 2 

lattice = 0 "  42/~ 
Orod 

or 0-  24 A on each coordinate 

(36) 

Thus the positional uncertainty arising from perturbations 

of  the lattice is estimated to lie between 0.24 and 0.33 ,~ 
on each coordinate. This result may be compared with 
the result of Edwards et al. (1990) for ribonuclease-A 
based on measurement of  the velocity of  sound of (u 2> = 

0 • 06 -+- 0 • 03.~, 2 which is a positional uncertainty of 

v '~ .  06 = 0 . 2 4  .~, on each coordinate. The present results 
are therefore compatible with their results and can accom- 
modate also a contribution from static disorder which, if 

present, is excluded from their estimate. The observed 
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Fig. 3. The dependence of apparent radii, scale factor and R factor on 
the number of modes employed. Modes 1 to 6 are the translational 
modes, 7 to 9 the librational ones and 10 to 19 the internal modes of 
Levitt, Sander & Stern. The curves marked with circles and squares 
are respectively equivalent radii of equal r.m.s, displacement and 
of equal volume, averaged over all 892 atoms in group I. The two 
upper curves so marked are based on all the modes used in each op- 
timization, and the lower curve (the two types of curve coincide) 
is the contribution of the six translational modes, which is little af- 
fected by the introduction of the internal modes to the system. For 
these curves the vertical scale is in ,~ and the horizontal bar is the 
equivalent mean radius of Wlodawer and Huber. For a discussion of 
these curves see text. The top curve is the scale factor, the horizontal 
bar being the value obtained using the isotropic B factors of Huber 
and Wlodawer. The bottom curve is the R factor, as a fraction, thc 
horizontal bar being the value obtained using Huber and Wlodawer's 
892 B factors and an independently measured scale factor. 

upper limit figure of  0.33 ,~, r.m.s. (or 0.11 A2 mean 
square) is closely similar to the value found for lysozyme 
by Sternberg, Grace & Phillips (1979) who report values 

of  0-115 and 0.110 ~2 for the corresponding quantity in 
the TLS and TL  models respectively. 

The r.m.s, values of  the three librational angles are 
1.99, 0.92 and 1.07 ° of  which the largest is associated 
with the long axis of  the molecule running approximately 
from Lys 15 to Ala 58. These figures are similar to 
those found for ribonuclease-A by Howlin, Moss & Har- 
ris (1989), 1.4 ° r.m.s., and for lysozyme by Sternberg, 
Grace & Phillips (1979) who report r.m.s, values of  2.6, 
1.6 and 0-5 ° 

The diagonal elements of  P for the internal modes 
(when the N matrices are scaled to correspond to 300 K) 
are 0.766, 0.000, 1.302, 0.212, 0.070, 0.772, 0-000, 
0 .341,0 .828 and 0-837, which have mean 0-513 and stan- 
dard deviation 0.44. Ideally, the Boltzmannian values for 
these figures would all be 0-5. Estimates of expected stan- 
dard deviations for the individual elements are not offered 
because the data set R5PTISFX does not include e.s.d.s 
on the IFol values, and because they are highly correlated 
observationally (although uncorrelated temporally),  as al" 
ready remarked after (33). 

The overall R factor and scale factor are also plotted in 
Fig. 3, together with their limiting values which are ob- 
tained by optimizing only the scale factor to be applied to 
5PTI, and measuring the R factor with the resulting value 
and the given B values. This one-parameter optimiza- 
tion was included to obtain strict comparabili ty with the 
results of  the modal method, which comparisons might 
otherwise have been influenced by minor  differences be- 
tween atomic scattering factors, cut-off limits in mod- 
elling the density, or other minor  differences of  technique 
between the current work and that of  Wlodawer,  Walter, 
Huber & Sj61in (1984). 
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Fig. 4. Conventional R factors plotted against V[(2sin0)/A] 3 with 
V=20/~ 3. The upper abscissa scale is [(2 sin 0)/N]- 1 in ,~. In de- 
scending order these curves are for 6, 9, 14, 19 and 892 thermal 
parameters. 
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Fig. 4 shows the R factor plotted against d .3. Here the 
reflections were sorted into 20 spherical shells of equal 
volume, the outer limit of the outermost shell correspond- 
ing to (2 sin 0)/A = 1 • 0 A- t .  Both these figures indicate 
that the three librational modes used are highly effective 
in reducing the R factor, suggesting that the variation in 
B between the surface and the interior of the molecule is 
the predominant systematic variation of this quantity. No 
optimization has been done in which the model included 
the internal modes and the translations, to the exclusion 
of the librations. 

Finally, in Fig. 5 we show stereo pairs of ORTEP draw- 
ings (Johnson, 1976) of the a-carbon atoms alone. It is 
noticeable that internal and bridged residues, such as Phe 
22 and Cys 55, have closely similar almost spherical dis- 
tributions which are dominated by the lattice contribution. 
Other regions, especially the termini, show marked elon- 
gations with a tendency for the major axis of each ellip- 
soid to be transverse to its position vector relative to the 
molecular centre. The portion of chain from Gly 37 to 
Arg 42 also shows substantial anisotropy with the elon- 
gation largely transverse to the length of the chain. Lat- 
eral movements of this portion correspond to soft defor- 
mations of the molecule and to displacements as between 
form I and form II of this molecule (Wlodawer, Deisen- 
hofer & Huber, 1987). 
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Abstract 

The temperature factor of silicon has been determined 
by the powder neutron diffraction technique employ- 
ing a double-axis neutron diffractometer. A neutron 
wavelength of 1.184/~ was used in the experiment. 
The sample used was a fine powder of silicon of purity 
99.999%. The correction to the observed intensities 
due to thermal diffuse scattering (TDS) was not 
applied as the neutron velocity of 3.34 km s-1 (corre- 
sponding to neutron wavelength of 1.184/~) is less 

* To whom all correspondence should be addressed. 
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than the minimum velocity of sound in this crystal. 
The B value obtained from these experiments was 
found to be 0.45 (2)/~2, corresponding to a mean- 
square vibrational amplitude of 0.017 (2)A2 and to 
a Debye temperature of 531 (11) K at the sample 
temperature of 284 K at which the experiment was 
performed. 

Introduction 

Silicon is an important element of commercial interest 
and accurate measurement of its physical properties 
is desirable. One such physical parameter is the total 
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